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1. Introduction

Boundary string field theory (BSFT) [1, 2] is one of off-shell formulations of string theory.

Though it is a version of covariant open string field theory, the formulation is close to

worldsheet sigma-model rather than the other open string field theories [3, 4]. BSFT has

been applied to unstable D-brane systems including tachyons (for a review, see [5]) and

it turned out to be successful in describing such systems. For example, it gives the exact

form of the tachyon potential [6 – 8].

BSFT is formulated on the space of all boundary interactions specified by couplings λ’s

in worldsheet sigma-models based on the Batalin-Vilkovisky (BV) formalism. In bosonic

string theory, the spacetime action S of BSFT, which is a function of λ’s, is defined through

the equation,

dS =
1

2

∫ 2π

0
dσdσ′ 〈dO(σ){QB ,O(σ′)}〉λ, (1.1)

where the correlator 〈· · ·〉λ is evaluated in a worldsheet sigma-model on a disk with the

boundary perturbation defined by λ’s. Here, O(σ) is a boundary operator which is also

specified by λ’s, and σ parametrizes the boundary of the disk. QB is the bulk BRST

operator. The gauge invariance of this action is guaranteed by the BV formalism. Under

the assumption of decoupling of matter and ghosts, it was shown in [2, 9] that the action S

is related to the disk partition function Z and β-functions of the worldsheet sigma-model as

S(λ) =

(

−βi(λ)
∂

∂λi
+ 1

)

Z(λ). (1.2)
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A proposal for boundary superstring field theory (super BSFT) for non-BPS D-branes

was first made in [8], where the action of super BSFT is rather phenomenologically identified

with the corresponding disk partition function:1

S(λ) = Z(λ). (1.3)

Soon later, justification for this proposal was attempted by [12, 13] based on the BV

formalism. In order to show the conjectured relation between the action and the partition

function, the following trick given in [2] has been used. First, assume that the matter

system consists of two decoupled subsystems. Then, by using the local integrability of the

definitional equation (1.1), one can express the action of BSFT by partition functions and

several one-point functions of the two subsystems. In the case of superstrings, it is plausible

that the one-point functions above, which are those of fermionic operators, vanish and the

action simply reduces to the partition function of the whole system. Thus, the conjecture

has been indirectly shown.

Recently, bosonic BSFT was reformulated in terms of the closed string Hilbert

space [14]. The main advantage of this formulation is that we can obtain the action S

itself by a simple algebraic calculation without any assumption:

S =
1

4
〈B|e2i{b−

0
,O}c−0 QBc

−
0 |0〉 −

i

2
〈B|Sym

[

e2i{b−
0

,O}; {QB , O}
]

c−0 |0〉. (1.4)

Then, it is reasonable to expect that this formulation also works for superstrings. The main

interest of this paper is to reconsider the construction of super BSFT in the same manner

as in [14] and obtain the general action S for superstrings without any assumption. For

this purpose, we need some modification for the fermionic two-form, which is one of the

key ingredients for BV formulation of BSFT. Under this new definition, the fermionic two-

form is much more simply represented in the closed string Hilbert space without relying on

bosonized superconformal ghosts. Furthermore, in this formulation, the proof of the gauge

invariance of the action is completely analogous to the one for bosonic string, and greatly

simplified compared to the one given in [13]. The general action of super BSFT is also

obtained without any assumption and it takes exactly the same form as the bosonic one.

Based on this general action, we revisit the conjectured relation, S = Z. We also argue

some common features on bosonic and super BSFT.

The organization of this paper is as follows. In section 2, we give a short review on

the previous construction of BV formulation for super BSFT and propose a new definition

of the fermionic two-form. We construct super BSFT in the closed string Hilbert space

and evaluate the action in section 3. The general form (3.13) of super BSFT action is one

of our main results of this paper. Two formal aspects of the BSFT action, the expansion

form and the gauge transformation, shared among bosonic and super BSFT, are provided

in section 4. In section 5, we reconsider the well-known relation S = Z in our formulation.

The final section is devoted to summary and discussion. Our convention and some explicit

calculations concerning the boundary fermion for non-BPS systems are given in appendices.

1This was originally discussed for massless modes in [10]. The extension to D-brane-anti-D-brane system

was given in [11].
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2. BV formulation of super BSFT and its modification

In this section, we shall briefly review the construction of super BSFT by mostly follow-

ing [13], where boundary operators in 0-picture are regarded as fundamental. To keep

the worldsheet supersymmetry, it is convenient to use the superfield formalism. The bulk

worldsheet action of NSR superstring in the superfield formalism is compactly given by2

Sbulk =
1

4π

∫

d2zd2θDθ̄X
µDθXµ +

1

2π

∫

d2zd2θBDθ̄C +
1

2π

∫

d2zd2θB̃DθC̃, (2.1)

where the worldsheet superfields X, B and C are written by the usual worldsheet fields,

Xµ(z, z̄) = Xµ + iθψµ + iθ̄ψ̃µ + θθ̄Fµ, (2.2)

B(z) = β(z) + θb(z), (2.3)

C(z) = c(z) + θγ(z), (2.4)

and B̃ and C̃ are the anti-holomorphic counterparts of B and C. Here, θ and θ̄ are fermionic

coordinates and the superderivatives are given by

Dθ = ∂θ + θ∂, Dθ̄ = ∂θ̄ + θ̄∂̄. (2.5)

One can consider a boundary perturbation which keeps the worldsheet supersymmetry by

introducing a boundary action of the form

Sbdy =

∫

dσdθ

2π
V(σ, θ). (2.6)

Here, V(σ, θ) is a boundary perturbation written by superfields with 0-picture and ghost

number 0. This boundary perturbation can be expanded by boundary couplings λ’s,

V =
∑

I

λIVI , (2.7)

where VI is a basis of boundary operators. In the formulation of [13], the boundary operator

O, which is related to the above boundary perturbation by V = bBSFT
−1 O, is considered as

the basic object of this string field theory. The operator bBSFT
−1 has ghost number −1 and

its precise definition is given in [1]. Thus, O has picture number 0 and ghost number 1.

In order to construct a boundary string field theory, we need a fermionic vector V

and a fermionic two-form ω in the space of all boundary interactions, which satisfy the

following three properties:

V 2 = 0 : nilpotency, (2.8)

dω = 0 : closedness, (2.9)

d(iV ω) = 0 : V−invariance. (2.10)

The natural choice of the fermionic vector V is the one generated by the bulk BRST

operator QB. The nilpotency of V immediately follows from the nilpotency of QB. The

2Throughout this paper, we use the convention α′ = 2.
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two-form ω is defined by two-point correlation functions of the deformed worldsheet theory.

In the case of super BSFT, the choice of the two-form is more subtle due to the complexity

of the notion of picture [15]. In [13], the two-form ω was defined in the following way:

ω(δ1O, δ2O) = (−)ǫ(δ1O)

∫

dσ1dσ2dθ1dθ2 〈Y (σ1)δ1O(σ1, θ1)Y (σ2)δ2O(σ2, θ2)〉λ . (2.11)

Here, Y (σ) is the inverse picture-changing operator,

Y = c∂ξe−2φ, (2.12)

and φ is the boson used to bosonize superconformal ghosts,3

β = e−φ∂ξ, γ = ηeφ, (2.13)

where ξ and η are fermions of dimension zero and one, respectively. In the above definition

of ω, an inverse picture-changing operator is inserted4 at the same position of each of the

two boundary operators O(σ, θ) in order to decrease the picture number of O by one and

saturate picture number −2.

However, in this paper, we propose a modified definition of the two-form ω instead of

the above one. We find the following new definition much more convenient for our purpose

of reformulating super BSFT in terms of boundary states. We define the two-form ω by

inserting a double-step inverse picture-changing operator Y Ỹ at the center of the disk,

z = eτ−iσ = 0, instead of the boundary:

ω(δ1O, δ2O) = (−)ǫ(δ1O)

∫

dσ1dσ2dθ1dθ2

〈

Y Ỹ (0)δ1O(σ1, θ1)δ2O(σ2, θ2)
〉

λ
. (2.14)

Here the double-step inverse picture-changing operator is nothing but the product of the

holomorphic inverse picture-changing operator and the anti-holomorphic one. This type of

picture-changing operator was first used in [16] in order to overcome the singular behavior

of cubic superstring field theory [17] due to the collision of picture-changing operators at

the midpoint.

By using these fermionic vector and two-form, (modified) super BSFT action is defined

by the equation

dSBSFT = (−)ǫ(δ1O)

∫

dσ1dσ2dθ1dθ2

〈

Y Ỹ (0)dO(σ1, θ1){QB ,O(σ2, θ2)}
〉

λ
. (2.15)

One may think that positions of picture-changing operators do not matter anyway. How-

ever, in superstring field theory where off-shell operators should be considered as well, we

cannot freely change the positions of picture-changing operators. Thus, our action of super

BSFT considered here is, in principle, different from the ones in [12, 13]. The advantage

3We regard eqφ for odd q as fermionic so that β and γ obey the correct statistics.
4In [12], the two-form is directly defined by inserting operators of picture number −1 without explicitly

using the superfield formalism or the inverse picture-changing operators.
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of this modified version of the two-form ω is that, by noting that the double-step inverse

picture-changing operator commutes with QB and bBSFT
−1 ,

{

QB, Y Ỹ
}

= 0,
{

bBSFT
−1 , Y Ỹ (0)

}

= 0, (2.16)

one can avoid all the complexity and the subtleties argued in the appendix A in [13], related

to inverse picture-changing operators. Therefore, as we will see in the next section, it is

straightforward5 to apply the previous proof [1, 9, 14] for bosonic BSFT to the superstring

case under this new definition.

3. General form of super BSFT action

In [14], bosonic BSFT was reformulated in terms of boundary states. In that formulation,

one can perform the integration of the definitional equation (1.1) without making any

assumption or approximation and obtain the general form of the action itself. We proceed

to formulate the above super BSFT along the same lines.6

First note that the insertion of the double-step inverse picture-changing operator Y Ỹ

at the center of the disk corresponds to considering the following state in the closed string

Hilbert space:

Y (0)Ỹ (0) ∼ lim
z→0

Y (z)Ỹ (z̄)|0〉

= lim
z→0

(

zc(z)∂ξ(z)e−φ(z)e−φ(0)
)(

z̄c̃(z̄)∂̄ξ̃(z̄)e−φ̃(z̄)e−φ̃(0)
)

|0〉

= − lim
z→0

(zβ(z))(z̄β̃(z̄))c(z)c̃(z̄)|0〉−1,−1 = −β−1/2β̃−1/2|Ω〉 ≡ |Y Ỹ 〉. (3.1)

Here |0〉−1,−1 ≡ e−φ(0)−φ̃(0)|0〉 represents the closed string vacuum with picture number

(−1,−1) and |Ω〉 = c1c̃1|0〉−1,−1 is the Fock vacuum for closed string oscillators. Remark-

ably, once we introduce this state |Y Ỹ 〉 to calculate the correlation functions, there is

neither complexity nor subtleties regarding the bosonization of superconformal ghosts and

the picture-changing operation, since all the boundary operators we consider here do not

have any picture. It immediately follows from (2.16) that the state |Y Ỹ 〉 is annihilated by

the BRST operator and b−0 ≡ (b0 − b̃0)/2, which comes from bBSFT
−1 in the boundary action:

QB |Y Ỹ 〉 = 0, b−0 |Y Ỹ 〉 = 0. (3.2)

In addition, |Y Ỹ 〉 has the total ghost number 0. Thus, |Y Ỹ 〉 shares common properties

with the SL(2, C) vacuum |0〉 in bosonic string.

5In the large Hilbert description, we must insert one additional ξ in order to saturate the zero-mode.

One may wonder whether the insertion of ξ makes any trouble. However, if BRST operator hits the ξ, the

term does not contain ξ zero-mode and just vanishes. So it does not affect the argument.
6In [18], the matter sector of super BSFT has been discussed in detail by using the boundary state

formalism.
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Making use of this state, we propose the following definitions of the nilpotent vector

V and the closed two-form ω,

δVO ≡ {QB , O}, (3.3)

ω ≡
1

2
〈B|Sym[e2i{b−

0
,O}; dO, dO]|Y Ỹ 〉. (3.4)

Here, O represents a boundary operator O(σ, θ) after σ and θ integrations,

O ≡

∫ 2π

0

dσdθ

2π
O(σ, θ), (3.5)

which can be expanded by couplings λI and basis OI as O =
∑

I λ
IOI . In the construction

of BSFT, we always define statistics of worldsheet couplings, namely string fields, so that

this O after θ integration is fermionic. The symbol Sym[· · · ] is defined in [14]:

Sym[e−V ;O1, O2, . . . , On]

=

∫ 1

0
dt1

∫ 1

t1

dt2 · · ·

∫ 1

tn−1

dtne
−t1VO1e

−(t2−t1)VO2 · · ·One
−(1−tn)V ± (perms). (3.6)

〈B| can be any on-shell boundary state satisfying 〈B|QB = 0 and 〈B|b−0 = 0, depending on

the open string vacuum at issue. In superstring theory, we have extra degrees of freedom

to specify the sign of boundary conditions for fermionic variables. The physical boundary

state which survives after GSO projection should be some linear combination of them.

Since, in our formulation of super BSFT, the two-form (and the action as well) is com-

prised of an inner product of such boundary states with the GSO-even closed string state

|Y Ỹ 〉 = PGSO|Y Ỹ 〉, the bra state is automatically chosen to be a GSO-even combination

of boundary states.

Now we shall show that our vector and two-form really satisfy the properties (2.8)–

(2.10). Fortunately, the algebraic proof given in [14] is directly applicable to the current

case by replacing the bosonic closed string vacuum |0〉 with |Y Ỹ 〉, both of which are ghost

number 0 and annihilated by b−0 and (the corresponding) BRST operators. In the following,

we repeat the argument given in [14] to make this paper self-contained. A more detailed

explanation can be found in the reference. The nilpotency of the vector V simply follows

from the nilpotency of QB
7 as usual. The closedness of ω comes from the fact that the

state |Y Ỹ 〉 is annihilated by b−0 :

dω = i〈B|Sym
[

e2i{b−
0

,O}; {b−0 , dO}, dO, dO
]

|Y Ỹ 〉

=
i

3
〈B|Sym

[

e2i{b−
0

,O}; dO, dO, dO
]

b−0 |Y Ỹ 〉 = 0. (3.7)

7For a non-BPS D-brane, the auxiliary boundary superfield Γ is introduced [19] to take the GSO-odd

sector into account. In this case, we should modify the BRST operator so that the anti-commutator

{b−
0

, QB} generates the rotation in this sector as well. This modification is necessary to prove the V -

invariance of the two-form ω. We discuss the BRST transformation of this auxiliary boundary superfield

in appendix B.
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Note that this proof of the closedness of ω is much simpler and transparent than the one

attempted in [13], where BRST invariance of unperturbed correlators is further employed.

The invariance of ω under the transformation generated by V is also proved without any

difficulty.

d(iV ω) =2i〈B|Sym
[

e2i{b−
0

,O}; {b−0 , dO}, dO, {QB , O}
]

|Y Ỹ 〉

− 〈B|Sym
[

e2i{b−
0

,O}; dO, {QB , dO}
]

|Y Ỹ 〉

= − i〈B|Sym
[

e2i{b−
0

,O}; dO, dO,
[

b−0 , {QB , O}
]]

|Y Ỹ 〉

− i〈B|Sym
[

e2i{b−
0

,O}; dO, dO, [QB , {b
−
0 , O}]

]

|Y Ỹ 〉

= −
i

2
〈B|Sym

[

e2i{b−
0

,O}; dO, dO, [L0 − L̃0, O]
]

|Y Ỹ 〉 = 0. (3.8)

In the last line, we have used the rotational symmetry generated by the operator L0 − L̃0

as usual. In the above proof, we have used the following properties:

〈B|b−0 = 〈B|QB = b−0 |Y Ỹ 〉 = QB |Y Ỹ 〉 = 0. (3.9)

These are nothing but the properties used in the proof [14] for bosonic BSFT:

〈N |b−0 = 〈N |QB = b−0 |0〉 = QB|0〉 = 0. (3.10)

Thus, our modified two-form (3.4) naturally satisfies the desired property (2.9) and (2.10).

Therefore, we can define a gauge invariant action S of super BSFT using these ingredients:

dS = 〈B|Sym
[

e2i{b−
0

,O}; dO, {QB , O}
]

|Y Ỹ 〉. (3.11)

In [14], the most important advantage of rewriting BSFT by boundary states is that

the equation defining the action can be easily integrated by performing simple algebraic

operations without any assumption or approximation. Therefore, we expect that the above

equation can also be integrated in the same manner. Again, formally, the calculation is

completely the same as the bosonic one [14] and we have

dS = d

(

1

4
〈B|e2i{b−

0
,O}c−0 QBc

−
0 |Y Ỹ 〉 −

i

2
〈B|Sym

[

e2i{b−
0

,O}; {QB , O}
]

c−0 |Y Ỹ 〉

)

, (3.12)

which leads to the action itself

S =
1

4
〈B|e2i{b−

0
,O}c−0 QBc

−
0 |Y Ỹ 〉 −

i

2
〈B|Sym

[

e2i{b−
0

,O}; {QB , O}
]

c−0 |Y Ỹ 〉. (3.13)

Thus, the action of super BSFT formally takes exactly the same form as the bosonic

one (1.4).

4. Expansion form and gauge transformation of BSFT

As we have seen in the previous section, the formal expression of BSFT action is the same

between bosonic and supersymmetric one. In this section, we develop some formal aspects

– 7 –
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of the BSFT action. From now on, we use the expression for bosonic BSFT (1.4) to describe

the general action of BSFT for simplicity. However, in the following, one can always recover

the expressions for super BSFT by simply replacing |0〉 with |Y Ỹ 〉 and reinterpreting all the

quantities by their supersymmetric cousins. Expanding the general action (1.4) in terms

of string field O, we have

S =
1

4
〈B|c−0 QBc

−
0 |0〉 (4.1)

+
1

4

∞
∑

n=0

(2i)n+1

(n+ 1)!
〈B|

[

{b−0 , O}n+1c−0 QBc
−
0 −

n
∑

m=0

{b−0 , O}n−m{QB , O}{b−0 , O}mc−0

]

|0〉.

One can evaluate the second term of the above expression order by order and find that it

takes rather simple form:

S =
1

4
〈B|c−0 QBc

−
0 |0〉 +

∞
∑

n=0

(2i)n

(n+ 2)!

n
∑

m=0

〈B|(Ob−0 )n−mOQBO(b−0 O)m|0〉

=
1

4
〈B|c−0 QBc

−
0 |0〉 +

1

2
〈B|OQBO|0〉 +

i

3
〈B|
(

OQBOb
−
0 O +Ob−0 OQBO

)

|0〉 + · · · . (4.2)

In order to interpret this action, it would be convenient to make a field redefinition, O →

goO, and an overall scaling, S → 1
g2

o
S, so that we have

S =
1

4g2
o

〈B|c−0 QBc
−
0 |0〉 +

∞
∑

n=0

(2igo)
n

(n+ 2)!

n
∑

m=0

〈B|(Ob−0 )n−mOQBO(b−0 O)m|0〉 (4.3)

=
1

4g2
o

〈B|c−0 QBc
−
0 |0〉+

1

2
〈B|OQBO|0〉+

igo

3
〈B|
(

OQBOb
−
0 O+Ob−0 OQBO

)

|0〉+· · · .

(4.4)

Here go represents the open string coupling constant. This expansion form of the BSFT

action shares several similar properties with other string field theories. First note that all

the terms are written8 in terms of correlation functions of an unperturbed conformal field

theory. The first term is just a constant energy shift and it should correspond to the D-

brane tension. Note that the next term starts from the kinetic term. Thus, we found that

BSFT does not have any open string tadpole around on-shell open string background as

desired. This is not obvious from the conjectured relation (1.3) of super BSFT as we shall

discuss in the following section. The kinetic term is quite similar to the one in cubic open

string field theory [3]. In both theories, the kinetic terms are written by a disk two-point

function of boundary vertex operators O with BRST operator:

Skin ∼ 〈OQBO〉disk . (4.5)

The difference is that the positions of two boundary vertex operators O are integrated

over the boundary of the disk in the case of BSFT, while they are fixed at some specific

8Though we have used the oscillator formalism of closed string theory to describe BSFT, we can always

go back to expressions written in terms of correlation functions of a conformal field theory.
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points from the beginning in cubic string field theory. Finally, the interaction part consists

of infinitely many terms as in the non-polynomial closed string field theory [20] or open

superstring field theory [4].

Obviously, the kinetic term of the above action is invariant under the transformation

of δ
(0)
Λ O = [QB ,Λ]. The full gauge transformation can be read off from a formal argument

of the BV formalism even without knowing the BSFT action itself and given by

δΛO = [QB ,Λ] + igo〈B|Sym
[

e2igo{b
−

0
,O}; {QB , O}, [b−0 ,Λ], OI

]

|0〉ωIJOJ . (4.6)

Here, ωIJ is the inverse matrix to ωIJ , which is the components of the two-form ω. One

can directly check the gauge invariance of BSFT by a straightforward calculation,

δΛS = 〈B|Sym
[

e2igo{b
−

0
,O}; δΛO, {QB , O}

]

|0〉

= 〈B|Sym
[

e2igo{b
−

0
,O}; [QB ,Λ], {QB , O}

]

|0〉

+ igo〈B|Sym
[

e2igo{b
−

0
,O}; {QB , O}, [b−0 ,Λ], {QB , O}

]

|0〉

= 〈B|Sym
[

e2igo{b
−

0
,O}; [QB ,Λ], {QB , O}

]

|0〉

+ 2igo〈B|Sym
[

e2igo{b
−

0
,O}; [QB , {b

−
0 , O}],Λ, {QB , O}

]

|0〉

= −〈B|Sym
[

e2igo{b
−

0
,O}; Λ, {QB , O}

]

QB|0〉

= 0. (4.7)

Thus, though BSFT appears extraneous to the other covariant string field theories

based on particular conformal field theories and overlapping conditions, the action of BSFT

formally possesses several structures similar to the others.

5. Revisiting the conjecture S = Z

As mentioned in the introduction, it is widely believed that the action S of super BSFT

is simply given by the disk partition function Z with boundary perturbations in the case

where matter and ghosts are completely decoupled [8, 12, 13, 21]. In this section, we revisit

this well-known conjecture.

For concreteness, let us consider the boundary state for a Dp-brane. The GSO-even NS-

NS boundary state for a Dp-brane is given by a linear combination of two boundary states,

NS〈Dp| = NS〈Bp,+| − NS〈Bp,−|, (5.1)

where ± correspond to different boundary conditions for worldsheet spinor fields as

summarized in appendix A. However, as we mentioned in section 3, the GSO-even

combination is automatically chosen in the action of super BSFT (3.13), due to the

GSO-invariance of the closed string state |Y Ỹ 〉. Hence we are allowed to focus only on

〈Bp,+|. Then the BSFT action for a Dp-brane is given by

S = −
i

4
〈Bp,+|e2i{b−

0
,O}c−0 QBc

−
0 |Y Ỹ 〉 −

1

2
〈Bp,+|Sym

[

e2i{b−
0

,O}; {QB , O}
]

c−0 |Y Ỹ 〉, (5.2)
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up to an overall normalization. Here, we have multiplied the action (3.13) by −i in order

to make the action real.

When matter and ghosts are completely decoupled, the string field O is given in the

following form:

O =

∫

dσdθ

2π
CV(σ, θ), (5.3)

where C = c(σ) + θγ(σ) is the ghost superfield on the boundary.9 The purely matter

superfield V is expanded as10

V = V(−1) + θV(0). (5.4)

After θ integration, we have

O =

∫ 2π

0

dσ

2π

(

γV(−1)(σ) − cV(0)(σ)
)

. (5.5)

The anti-commutator with b−0 in the exponent appearing in the action (5.2) picks the

“zero-picture part” V(0) up and the exponential does not depend on ghosts at all:

e2i{b−
0

,O} = exp

[
∫ 2π

0

dσ

2π
V(0)

]

. (5.6)

Therefore, we can freely perform the calculation for ghost parts in this particular case.

The evaluation of the first term of the action (5.2)

S1 ≡ −
i

4
〈Bp,+|e2i{b−

0
,O}c−0 QBc

−
0 |Y Ỹ 〉, (5.7)

is straightforward. Though the BRST operator QB appears in this expression, only ghost

parts of it survive due to two c−0 ’s and S1 reduces to the partition function Z,

S1 = −〈Bp,+|e2i{b−
0

,O}c−0 |Ω〉 = Z(λ). (5.8)

Let us move on to the second term of the action,

S2 = −
1

2
〈Bp,+|Sym

[

e2i{b−
0

,O}; {QB , O}
]

c−0 |Y Ỹ 〉. (5.9)

This term which vanishes for on-shell deformations potentially represents the correction

from the conjectured form S = Z. Defining the following combinations,

β+
r = βr + iβ̃−r, G+

r = Gr + iG̃−r, (5.10)

which annihilate 〈Bp,+|, the second term becomes

S2 = −
i

2
〈Bp,+|Sym

[

e2i{b−
0

,O}; {QB , O}
]

c−0 β
+
1/2β

+
−1/2|Ω〉

= −
i

2
〈Bp,+|Sym

[

e2i{b−
0

,O}; {G+
−1/2, [O,β

+
1/2]}

]

c−0 |Ω〉

9Here, boundary superfields are taken to be the tangential components of the corresponding superfields.

Note that they depend on the boundary condition ± for worldsheet spinor fields. For a precise definition,

see appendix A.
10The superscripts indicate the natural picture numbers for the component fields of V. However, one

should keep in mind that both of them do not have any picture in this context.
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−
i

2
〈Bp,+|Sym

[

e2i{b−
0

,O}; {G+
1/2, [O,β

+
−1/2]}

]

c−0 |Ω〉

+ 〈Bp,+|Sym

[

e2i{b−
0

,O};

∫ 2π

0

dσ

2π
V(0)

]

c−0 |Ω〉. (5.11)

On the contrary to the anti-commutator with b−0 , the commutators of O with β+
±1/2

give

the V(−1) part of the matter superfield with some phases:

[O,β+
±1/2] = i1/2

∫

dσ

2π
e∓iσ/2V(−1)(σ). (5.12)

The further operation of G+
∓1/2 gives a SUSY transformation as follows:

{G+
−1/2, [O,β

+
1/2]} + {G+

1/2, [O,β
+
−1/2]}

= i

∫

dσ

2π

(
∮

σ

dw′

2πi
ei(w

′−σ)/2TF (w′) −

∮

σ

dw̄′

2πi
ei(w̄

′−σ)/2T̃F (w̄′)

)

V(−1)(σ)

+ i

∫

dσ

2π

(
∮

σ

dw′

2πi
e−i(w′−σ)/2TF (w′) −

∮

σ

dw̄′

2πi
e−i(w̄′−σ)/2T̃F (w̄′)

)

V(−1)(σ). (5.13)

If we restrict the matter superfields to superconformal primaries, which satisfy

TF (z)V(−1)(0) ∼ −
1

z
V(0)(0), (5.14)

the above SUSY transformation (5.13) gives

−2i

∫

dσ

2π
V(0). (5.15)

Then, the correction terms (5.11) exactly cancel each other. Thus, we have directly shown

that, for purely matter superconformal deformation,11 the action (3.13) reduces to the

partition function Z as conjectured.

The above calculation may also indicate that the conjectured relation S = Z is not

always true for operators having more general OPE than (5.14). Actually, one can find

some explicit examples in literatures, which would imply that S = Z is not always valid.

For example, in [22, 23], the authors explicitly calculated correlation functions of some

non-primary massive operators in the flat background and found that some one-point

functions do not vanish. These examples suggest that if the action is simply defined by

the partition function Z, such an action has a tadpole. However it is unlikely that such

a trivial background is not a solution of the theory. On the other hand, as shown in the

previous section, the general action of (super) BSFT does not have any tadpole around

any unperturbed background. Thus, for operators with non-vanishing one-point functions,

we surely need the correction term S2 to cancel the tadpole.

This conclusion is partially satisfactory but there still exists a puzzle. From the begin-

ning, boundary operators O(σ, θ) are assumed to be superfields. However, we have never

11The previous argument on this conjecture given in [13], which is based on two decoupled systems, has

also partly relied on superconformal primary fields. On the other hand, the argument given in [12] does

not depend on superconformal primary but the proof for (2.9) and (2.10) is not generally discussed.
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used the property of being superfields except for the argument above, where we have fur-

ther restricted ourselves to superconformal primaries. Thus, throughout the formulation of

super BSFT, the superfield formalism has never shown its importance, though the world-

sheet supersymmetry is known to be necessary to obtain physically reasonable results. We

shall further discuss this puzzle in the next section.

6. Summary and discussion

We have constructed a BV formulation of boundary superstring field theory in terms of

boundary states. We have made a minor modification on the fermionic two-form ω, which

leads to a simpler expression of the two-form when it is written in the closed string Hilbert

space. With this modification, the proof of the closedness and the invariance of the two-

form under the transformation generated by the fermionic vector V , which are essential

to the gauge invariance of BSFT, is much more simplified and transparent. Furthermore,

with the help of the closed string oscillator expression, we have obtained the general form

of the action of super BSFT without any assumption or approximation. It would be worth

while mentioning that this general action of super BSFT takes exactly the same form as the

bosonic one, which enables us to argue formal aspects of the general action of both BSFTs

simultaneously as in section 4. In that section, we have derived the expansion form and the

gauge transformation of generic BSFT. We hope that these results help us to understand

the relation between BSFT and other formulations of string theory. Finally, as a special

case of the general action, we have revisited the famous conjecture that the action of super

BSFT is simply given by the partition function when matter and ghosts are completely

decoupled. We have directly derived this relation from the general form of the action of

super BSFT for superconformal primaries.

In the rest of this section, we argue the puzzle mentioned in the previous section.

The puzzle is that, throughout this paper, the role of the superfield formalism is not

clear. Especially, the proof of closedness and V -invariance of the two-form is completely

independent from the superfield formalism. Of course, one would expect that the superfield

formalism ensures the existence of the rigid supersymmetry on the worldsheet. However,

the concept of the rigid supersymmetry in the σ coordinate is somehow ambiguous due to

the anti-periodicity of worldsheet spinor fields in the NS sector. In order to keep the (anti-

)periodicity of superfields, we have to regard the fermionic coordinate θ as anti-periodic,

which implies that θ, and hence, the SUSY transformation parameter implicitly depend on

σ. One optimistic possibility would be that the transformation given by (5.13) corresponds

to a natural “rigid” supersymmetry in the σ coordinate and the superfield formalism here

ensures the transformation (5.13) gives the corresponding superpartner (5.15). If this is

the case, we can always take the relation S = Z as the definition of the super BSFT

action as far as matter and ghosts are decoupled. However, it also suggests that one-

point functions must vanish because the action of BSFT never has any tadpole as shown

in section 4, which contradicts the explicit calculations given in [22, 23]. We might have

to reconsider the treatment of superfields in the σ coordinate more carefully for generic

off-shell operators.
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A. Closed string oscillators, boundary states and mode expansions

Mode expansions:12

∂Xµ(z) = −i
∞
∑

m=−∞

αµ
m

zm+1
, ∂̄Xµ(z̄) = −i

∞
∑

m=−∞

α̃µ
m

z̄m+1
, ψµ(z) =

∑

r∈Z+1/2

ψµ
r

zr+1/2
, (A.1)

b(z) =

∞
∑

m=−∞

bm
zm+2

, c(z) =

∞
∑

m=−∞

cm
zm−1

, β(z) =
∑

r

βr

zr+3/2
,

γ(z) =
∑

r

γr

zr−1/2
. (A.2)

Superconformal generators:

Lm =
1

2

∑

n

αµ
m−nαµn +

1

2

∑

r

(

r −
m

2

)

ψµ
m−rψµr

+
∑

n

(m+ n)bm−ncn +
1

2

∑

r

(m+ 2r)βm−rγr −
1

2
δm,0 ,

Gr =
∑

n

[

αµ
nψµ,r−n −

2r + n

2
βr−ncn − 2bnγr−n

]

. (A.3)

BRST operator:

QB =
1

2πi

∮

(dz jB − dz̄ j̃B)

=
∑

n

c−nL
m
n +

∑

r

γ−rG
m
r +

∑

m,n

m− n

2
b−n−mcmcn

+
∑

n,r

[

2r − n

2
β−m−rcmγr − b−mγm−rγr

]

−
1

2
c0 + (anti-holomorphic part). (A.4)

Ghost zero-modes:

b+0 ≡b0 + b̃0, b−0 ≡
1

2
(b0 − b̃0), c+0 ≡

1

2
(c0 + c̃0), c−0 ≡c0 − c̃0. (A.5)

12Throughout this paper, we only consider the NS sector. We denote integer and half-integer modes by

the indices m, n, . . . and r, s, . . ., respectively.
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Normalization:

−1,−1〈0|c−1c̃−1c
−
0 c

+
0 c1c̃1|0〉−1,−1 = 1. (A.6)

Boundary state for Dp-brane:

〈Bp,±|=−1,−1〈0|c−1c̃−1c
+
0 δ

9−p(x̂i−xi) exp

[

−
∞
∑

n=1

1

n

(

αµ
nα̃µn−α

i
nα̃in

)

−
∞
∑

n=1

(cnb̃n+c̃nbn)

]

× exp

[

∓i
∑

r>0

(

ψµ
r ψ̃µr − ψi

rψ̃ir

)

± i
∑

r>0

(

βrγ̃r − β̃rγr

)

]

, (A.7)

where µ = 0, . . . , p and i = p+ 1, . . . , 9. This satisfies the following conditions:

〈Bp,±|(αµ
n + α̃µ

−n)=〈Bp,±|(αi
n − α̃i

−n)=〈Bp,±|(cn + c̃−n)=〈Bp,±|(bn − b̃−n)=0,

〈Bp,±|(ψµ
r ∓ iψ̃µ

−r)=〈Bp,±|(ψi
r ± iψ̃i

−r)=〈Bp,±|(βr ± iβ̃−r)=〈Bp,±|(γr ± iγ̃−r)=0.

(A.8)

In our convention, the boundary of the disk is given by the conditions, w = w̄ and

|z|2 = 1, in the cylinder coordinate w = σ + iτ and the disk coordinate z = e−iσ+τ ,

respectively. Boundary operators are written by the tangential components of operators

on the boundary. The mode expansions for matter boundary operators (for the Neumann

directions) are given by

Xµ(σ) = xµ + i
∑

m6=0

1

m
(αµ

me
imσ + α̃µ

me
−imσ), (A.9)

ψµ
±(σ) =

ψµ(w) ± ψ̃µ(w̄)

2
=
i−1/2

2

∑

r

(ψµ
r ± iψ̃µ

−r)e
irσ, (A.10)

and for ghosts,

b(σ) =
b(w) + b̃(w̄)

2
= −

1

2

∑

n

(bn + b̃−n)einσ , (A.11)

c(σ) =
c(w) + c̃(w̄)

2
=
i

2

∑

n

(cn − c̃−n)einσ, (A.12)

β±(σ) =
β(w) ± β̃(w̄)

2
=
i−3/2

2

∑

r

(βr ∓ iβ̃−r)e
irσ, (A.13)

γ±(σ) =
γ(w) ± γ̃(w̄)

2
=
i1/2

2

∑

r

(γr ∓ iγ̃−r)e
irσ, (A.14)

where the signs ± represent the possible choices of boundary conditions, which correspond

to the boundary states, 〈Bp,±|. Superfields on the boundary are composed of these

tangential components,

X
µ
± = Xµ + 2iθψµ

±, B± = β± + θb, C± = c+ θγ±, (A.15)

and the supercovariant derivative is D = ∂θ + θ∂σ.
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B. BRST operator for boundary fermion

In section 3, we have proved the V -invariance of the two-form and derived the general action

of super BSFT. The key fact there is that the anti-commutator of the BRST operator QB

with b−0 generates the rotation of the whole system. However, in order to deal with a

non-BPS D-brane, we need to introduce the auxiliary boundary superfield Γ = η + θF ,

known as the boundary fermion, to take the GSO-odd sector into account [19]. Therefore,

for consistency, we must generalize the BRST operator so that its anti-commutator with

b−0 gives the rotation of the whole sector including the auxiliary field. In this appendix, we

propose such a generalization of the BRST operator.

The kinetic term for the auxiliary boundary superfield Γ is given by

SΓ = −

∫

dσdθ

2π
ΓDΓ = −

∫

dσ

2π
(∂ση η + F 2). (B.1)

As an example of the usage of the auxiliary superfield, the boundary operator for the

tachyon is written as

OT =

∫

dσdθ

2π
CT (X)Γ =

∫

dσ

2π
[γTη − cTF − 2ic∂µTψ

µη] . (B.2)

Recalling that η and F are of dimension 0 and 1/2, respectively, we can formally define

operators Pn and Qr as

[Pn, η] = ie−inσ∂ση, [Pn, F ] = ie−inσ∂σF +
n

2
e−inσF,

{Qr, η} = i−3/2e−irσF, [Qr, F ] = i−3/2e−irσ∂ση. (B.3)

Then, Pn and Qr satisfy the super-Virasoro algebra with central charge zero,

[Pm, Pn] = (m− n)Pm+n , {Qr, Qs} = 2Pr+s , [Pn, Qr] =
n− 2r

2
Qn+r . (B.4)

A natural guess for the generalization of the BRST operator would be adding the following

term to the original BRST operator QB,

Q′
B =

∑

n

cnP−n +
∑

r

γrQ−r. (B.5)

Then, this Q′
B satisfies the following (anti-)commutation relations as desired,

{Q′
B , 2b

−
0 } = P0, [QB , β

+
±1/2] = Q±1/2. (B.6)

The second relation is also essential to ensure the cancellation of the second term of the

general action (5.11) for primary operators. One can also check that this modified BRST

operator QB +Q′
B is nilpotent:

{QB +Q′
B, QB +Q′

B} = 0. (B.7)
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As a consistency check of this generalization of the BRST operator, we demonstrate

that the usual tachyon potential can be derived from (3.11) with this modified BRST

operator. Substituting the constant tachyon profile into (3.11), we have

dS = dS1 + dS2 + dS3, (B.8)

where

dS1 = −i〈Bp,+|e
R

dσ
2π

FT

(
∫

dσ1

2π
γηdT

)(
∫

dσ2

2π
[QB , γ]ηT

)

|Y Ỹ 〉, (B.9)

dS2 = −i〈Bp,+|e
R

dσ
2π

FT

(
∫

dσ1

2π
cFdT

)(
∫

dσ2

2π
{QB , c}FT

)

|Y Ỹ 〉

=−
1

2

∑

n,r

〈Bp,+|e
R

dσ
2π

FT

(
∫

dσ1

2π
cFdT

)(
∫

dσ2

2π
(γn−rγr−γ̃r−nγ̃−r)e

inσFT

)

|Y Ỹ 〉, (B.10)

dS3 = −i〈Bp,+|e
R

dσ
2π

FT

(
∫

dσ1

2π
(γη − cF )dT

)(
∫

dσ2

2π

(

γ{Q′
B , η}+c[Q′

B , F ]
)

T

)

|Y Ỹ 〉

= 〈Bp,+|e
R

dσ
2π

FT

(
∫

dσ1

2π
γη dT

)

[

∫

dσ2

2π

(

γ
∑

n

cne
inσ−c

∑

r

i−
1

2 γre
irσ

)

∂ση T

]

|Y Ỹ 〉

− i
3

2

∑

r

〈Bp,+|e
R

dσ
2π

FT

(
∫

dσ1

2π
cFdT

)(
∫

dσ2

2π
γγre

irσFT

)

|Y Ỹ 〉. (B.11)

Note that the third term dS3 comes purely from the additional term, Q′
B , in the modified

BRST operator. The correlation functions for η and F needed to evaluate the terms above

are given by

〈η(σ)η(σ′)〉 =
π

2
ǫ(σ − σ′) =

1

2i

∑

r

eir(σ−σ′)

r
, (B.12)

〈

e
R

dσ
2π

FTF (σ1)
〉

= −
1

2
T (σ1) e

− 1

4

R

dσ
2π

T 2

, (B.13)

〈

e
R

dσ
2π

FTF (σ1)F (σ2)
〉

=
1

4

[

T (σ1)T (σ2) − 4πδ(σ1 − σ2)
]

e−
1

4

R

dσ
2π

T 2

. (B.14)

However, even before the evaluation, we see that dS2 and the second term of dS3 cancel

out each other by using the boundary condition (A.8). Furthermore, the first term of dS3

simply vanishes. Therefore, the net contribution only comes from dS1, and we have

dS = dS1 = −
1

2
TdTe−

T2

4 , (B.15)

which leads to the usual tachyon potential V = e−
T2

4 . Note that, though the net contri-

bution comes from the first term, dS1, we also need the cancellation of the second term,

dS2, by the third term, dS3, which originates from the additional term (B.5) of our mod-

ified BRST operator. Though we discussed the case of a non-BPS D-brane, it would be

straightforward to extend our argument to multi D-brane systems (including anti-D-branes)

by introducing more than one such auxiliary superfields.
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